
Trigger Me Timbers
Overview Guide

Last updated: 23 Feb 19

Online Documentation
docs.productionsofdust.com

Table of Contents
Online Documentation 1

Table of Contents 1

A word (or number of words) from the author 2

Frequently Asked Questions 2
Where do I go to get help? 2

So what is Trigger Me Timbers, exactly? 3

How to use Trigger Me Timbers 4
Triggers 4

List of Triggers and Features 4
Using Triggers In the Editor 4

Summary 4
Bottom Section 7
Triggerables 7
Trigger True / Trigger False 7
Extra Features 8

Using Triggers In Code 10
Triggerables 15

List of Triggerables and Features 15
Using Triggerables in the Editor 15

Summary 15
Objects to Set 18

http://docs.productionsofdust.com/

Custom True Values / Custom False Values 18
Use Custom 18
Extra Features 19

Using Triggerables in Code 21
Best Practices 25

Use a consistent style when building objects in the editor 25

A word (or number of words) from
the author
Ahoy!

I wanted to take a moment to thank you for your purchase. I started Dust Productions LLC with
the intention of creating elegant interactive experiences (which is just marketing BS for wanting
to make awesome software). I’ve been making games and software for over 10 years now,
and I’ve learned a thing or two along the way. I hope to share that knowledge with you.

If you are coming in with little to no programming experience, I think you will find care was taken
to make this powerful package as simple to use as possible. If you are coming in as a
seasoned programming veteran of the industry with years of experience, I think you will also find
care was taken to make extending the classes and Components simple if you need to create
and customize more. There’s a sea of possibilities out there, I truly hope this is the map to the
treasure you’ve been looking for.

YAARRG!

Frequently Asked Questions

Where do I go to get help?
The first thing to do is check out this FAQ and guide or the online documentation for answers.

If your problem is not answered in those places, the next fastest way to get support is through
GitLab. It’s possible an issue is already open for your problem.
GitLab: https://gitlab.com/DustProductions/DustProductions.TriggerMeTimbers/issues

If you cannot access GitLab, or you just have a quick question or something, you can email us
as well.
Email: support@productionsofdust.com

So what is Trigger Me Timbers, exactly?
Trigger Me Timbers seeks to accomplish one
thing: abstract out the idea of what causes
something to happen, and what happens as a
result of the cause. In other words, Trigger Me
Timbers breaks apart cause and effect and
standardizes how they communicate with one
another. Here’s a nice graphic that summarizes
the concept:

What’s even better is that you can have many
Triggers activate a Triggerable, and many
Triggerables be activated by a Trigger. The
result of this is the ability to have something like a
button press, do something like turn a UI
GameObject on. Maybe that same button press
also fades the transparency, plays a sound, and
moves the GameObject slightly. The result of
which is you have a nice polished UI panel that
fades in and out of existence making a soft
swishing sound as it comes and goes. Instead of
creating one script called “TurnOnUiObject” that
does those things, and isn’t reusable, you have the

http://docs.productionsofdust.com/
https://gitlab.com/DustProductions/DustProductions.TriggerMeTimbers/issues
mailto:support@productionsofdust.com

TriggerOnButtonClick, TriggerableSetGameObjectsActive,
TriggerableSetTransformValues, TriggerableAudioSourcePlayback, and
TriggerableSetFloat with a CanvasGroupAlphaSetter. These Components can be used as
building blocks to get the behaviour we are looking for, and they can be used over and over
again.

Of course, that was just one example of what you could create. There are plenty of unique
Components that cause a behaviour to happen (i.e. a Trigger) and create the effect (i.e. a
Triggerable). And if what this package provides isn’t enough, you can create your own code
that hooks into the system to leverage what the powerful Components have to offer. We’ll go
into more details later, but it’s so easy, a picaroon could do it.

Do you have documentation on the API?
Yep, we sure do. You can find that on our website at docs.productionsofdust.com

How to use Trigger Me Timbers

Triggers
Triggers are the “Cause” part of the Cause and Effect relationship in Trigger Me Timbers. A
Trigger can be anything from a button click, to a scene loading, to something custom in your
game.

List of Triggers
For a full list of all the current Triggers, please visit the online documentation. Keep in mind that
some Triggers might inherit from other Triggers.

Using Triggers In the Editor

Summary
Remember this diagram?

http://docs.productionsofdust.com/
https://productionsofdust.com/docs/TriggerMeTimbers/html/T_DustProductions_TriggerMeTimbers_Trigger.htm#fullInheritance

We are concerned with the top half in this diagram, not so much the bottom half (we’ll get to that
later). Here is the high level overview for what this looks like with an example, the
TriggerOnToggled Component:

You can check out the Triggerables section for discussion on how those work, but for now we
will focus on how the TriggerOnToggled Component is set up. Here’s a larger view of that
Component:

Going from top to bottom, you will see the sections titled Trigger True, Trigger False,
Triggerables, and Toggle Listener. We will go into detail on these, starting from the bottom
section.

Bottom Section
The bottom section is where you will find configuration specific to that Trigger, if any is needed.
In this case the Toggle Listener section has a reference to the Toggle we want to pay attention
to, as well as the option to check it when the game starts.

Triggerables
The next section up is where you can link any Triggerables for this Trigger to activate. We
have the two Triggerables mentioned previously. Again, we will cover those in a later part of
this document. If you add this to a GameObject that already has Triggerables on it, they will be
automatically added here, otherwise you can drag and drop from the hierarchy to add them.

Trigger True / Trigger False
Above that we have the sections for Trigger True and Trigger False. These are the most
important sections, and determine when to tell the Triggerables to do things. The field named
True Trigger and False Trigger have dropdowns that list all the things the Trigger Component
can listen for. In this case the options are ToggledOn, ToggledOff, and OnAnyToggle (not
pictured). Each Trigger Component will have its own set of options in this dropdown. There

are also options to delay hitting the Triggerables until some time has passed, and whether or
not there should be a maximum number of hits allowed.

All of the Triggers are set up set up the same way, so figuring out how to use it once, means
you will know how to use it for everything else. If you prefer to see more clear example, you
should check out the TriggerableSetTransformValues scene. If you’d like to see some more
practical examples, you should check out the MainMenu or PhoneScreen scene

Extra Features

Debugging / Testing
There’s a few more things about Triggers I
should mention. There are some convenience
features that you can find in the context menu
(accessed by right clicking on the title of the
Component).

You can simulate hitting a trigger by choosing
Spoof True Hit, Spoof False Hit, Spoof True
Hit (Instant), or Spoof False Hit (Instant).
The “(Instant)” versions will bypass any
restrictions or delays, while the ones without
will respect things like the max hits and delays.
These options are useful for debugging so you
don’t have to get to the part in the game where
you are trying to hit the Trigger. It can also be useful as a debug when you aren’t seeing the
behaviour you expect so you can narrow down whether it’s the thing hitting the Trigger, the
Triggerables themselves, or something outside of that system causing your unexpected
behaviour.

Copy / Paste
The next really handy feature is the ability to Copy Trigger Variables and Paste Trigger
Variables. This is similar to Copy Component and Paste Component Values, except it can
be used across different Trigger types. Here’s an example:

Let’s say we have an existing TriggerOnToggled, and a Component we just added called
TriggerOnTimer. TriggerOnToggled might have a bunch of things we want to also use, like
the Triggerables, the delays, and the maximum number of hits for different things.
TriggerOnToggled also has some things we don’t want on our new Component.

In this instance, we can do our copy and paste, and it is smart enough to not bring over things
that are unique to the TriggerOnToggle Component. So what we end up with looks something
like this:

Notice the True Trigger and False Trigger haven’t changed, nor has anything in the bottom
section, because those are unique to the Trigger, but everything else copied over.

If you are curious about making your own Triggers, you can go to the next section, otherwise it
might be a good idea to go on to the Triggerables section in this document.

Using Triggers In Code
So you want to make your own Triggers, eh? No problem, here’s how you do it. First thing you
have to do is make sure DustProductions.TriggerMeTimbers exists in your Unity project.
Then you make a new script however you prefer, I like to right-click on the folder and do this:

Then after you’ve named your file (I’m naming it TriggerOnSceneLoad), open it up in your IDE.
You should be greeted with something like this:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class TriggerOnSceneLoad : MonoBehaviour
{

 // Use this for initialization
 void Start ()
 {

 }

 // Update is called once per frame
 void Update ()
 {

 }

}

Now before we start to write our code, we have to do a few things. The first is to make sure we
add “using DustProductions.TriggerMeTimbers” to the top of the file. Then we can inherit
from Trigger instead of MonoBehaviour. I also like to delete the things Unity added for me and
start with a blank slate. If you’ve made it this far, your compiler should hopefully start yelling at
you that you haven’t implemented the abstract class. That’s the next step. Here’s what it looks
like now.

using DustProductions.TriggerMeTimbers;
using UnityEngine;

public class TriggerOnSceneLoad : Trigger
{

 protected override string[] GetTriggerDropdownOptions()
 {

 throw new System.NotImplementedException();
 }

}

If we were to try and add the Component now, this is what we would see:

We would also see that NotImplementedException in the Unity console. Let’s fix that up.
GetTriggerDropdownOptions() is called whenever the Unity inspector needs to show the True
Trigger and False Trigger dropdowns. So what we want to do is make sure we set those so
our Trigger actually has functionality. Without doing so, the dropdowns will always say None.
For this example, we will do the following:

using DustProductions.TriggerMeTimbers;

using UnityEngine;

public class TriggerOnSceneLoad : Trigger
{

 // Required by Trigger
 protected override string[] GetTriggerDropdownOptions()
 {

 return new string[] { "OnAnySceneChange" };
 }

}

This tells the dropdown options to also contain the string “OnAnySceneChange”. Now our
dropdown should look like this if we check it out in the editor:

Nice! Now we have to make it so our Trigger can pay attention to scene changes.

using DustProductions.TriggerMeTimbers;
using UnityEngine;
using UnityEngine.SceneManagement;

public class TriggerOnSceneLoad : Trigger
{

 // Required by Trigger
 protected override string[] GetTriggerDropdownOptions()
 {

 return new string[] { "OnAnySceneChange" };
 }

 // Used to fire callback for implementation
 private void Awake()
 {

 SceneManager.activeSceneChanged += OnSceneChanged;

 }

 private void OnDestroy()
 {

 SceneManager.activeSceneChanged -= OnSceneChanged;

 }

 // This will be called whenever the scene changes in play mode
 private void OnSceneChanged(Scene current, Scene next)
 {

 // Tell Trigger to fire here
 }

}

Great, now we just need to tell the Trigger to fire when OnSceneChanged() is called. This is
simple enough.

 // This will be called whenever the scene changes in play mode

 private void OnSceneChanged(Scene current, Scene next)
 {

 CheckTriggerString("OnAnySceneChange");
 }

This is a method in the Trigger class that checks if any of your dropdowns match that string and
fires a hit when they match. Now make sure one of your dropdowns is set to the
OnAnySceneChange option, press the play button, and notice Total True Hits was
incremented!

You might also notice that the console is yelling at you because there are no Triggerables
assigned to this script. That is to be expected. Just drag and drop any old Triggerable if you
haven’t already, and you should be good to go.

There might be a time where you might not want to automatically CheckTriggerString(), and
need to do some additional checks before hitting the trigger. In this case, instead of using
CheckTriggerString(), you would do your checks manually, and call HitTrigger(bool
triggerValue) Here’s a quick example of what that looks like:

 // This will be called whenever the scene changes in play mode
 private void OnSceneChanged(Scene current, Scene next)
 {

 if (current.name.Equals("MainMenu") &&
 TrueTrigger == "OnCurrentIsMainMenu")
 {

 HitTrigger(true);
 }

 if (current.name.Equals("MainMenu") &&
 FalseTrigger == "OnCurrentIsMainMenu")
 {

 HitTrigger(false);
 }

 }

Note that HitTrigger() doesn’t automatically mean the linked Triggerables will be hit. It will still
respect any delays or maximum number of hits set in the inspector. But that’s it, you have now
made it so some code you wrote can hook into everything Trigger Me Timbers has to offer.

!
It’s probably not a good idea to leave all those strings laying around your code, turn them
into consts so there’s no way they can be mistyped! And null check your variables! We
run a tight ship around here!

Triggerables
A Triggerable Component is the “Effect” part of the Cause and Effect relationship in Trigger Me
Timbers. A Triggerable changes the game world, and can do things like activating
GameObjects, change the mouse cursor, moving Transforms, and anything else you might want
it to do.

List of Triggerables
For a full list of all the current Triggerables, please visit the online documentation. Keep in mind
that some Triggerables might inherit from other Triggerables.

Using Triggerables in the Editor

Summary
Remember this diagram?

We are now concerned with only the bottom half of the diagram. Here’s how we move the
Toggle around in the included TriggerableSetTransformValues scene. You can follow along
in the Unity editor, if you like. Here’s a summary of what’s happening:

https://productionsofdust.com/docs/TriggerMeTimbers/html/T_DustProductions_TriggerMeTimbers_Triggerable.htm#fullInheritance

So let’s break down how the TriggerableSetTransformValues Component is setup, and what
each of the options do. Here’s a bigger image of the Component.

From top to bottom, we have the sections Use Custom, Custom True Values, Custom False
Values, and Objects to Set. Now, let’s go into more detail on these, starting from the bottom.

Objects to Set
These are the objects in the game world that we want to manipulate with the Triggerable. This
one is manipulating TransformValueSetter Component, which is a nice utility Component to
move Transforms over time. We are able to assign more than one TransformValueSetter by
increasing the size of the array if we wanted to set multiple at the same time.

Custom True Values / Custom False Values
Here’s where most of the configuration is going to be. The custom values will vary depending
on the particular Triggerable you are using. This Component has custom values for
Transforms. These Transform values are what we will set the Toggle’s Transform values to.
On many Triggerables, you will find the option to Cache Custom True / False Values. We are
not doing any caching on this object, so that means whatever the Transform values are when
the Triggerable gets hit, that’s where we will move the Toggle. There are also options to cache
OnAwake, OnStart, and BeforeFirstModification. The first two options mean that whenever
Awake() or Start() are called on the Component, the Transform values will be saved off. This
means you could move around the TruePosition and FalsePosition Transforms while the
game is running, and the Toggle would still go to wherever they were when Awake() or Start()
were called. BeforeFirstModification will cache the values before we ever modify anything
with this Component. Similarly, other Components are able to cache colors, alpha values,
Toggle isOn values, etc. Basically whatever the Triggerable is modifying, it will be saved off
before that Component touches it.

Use Custom

 True in Inspector False in Inspector

Use Custom When Trigger
True

True passed in: Custom
Value Used

True passed in: Cached
Value Used

False passed in: N/A False passed in: N/A

Use Custom When Trigger
False

True passed in: N/A True passed in: N/A

False passed in: Custom
Value Used

False passed in: Cached
Value Used

The Use Custom section has two options. The chart above summarizes what happens when
different options are set, and different values are passed in, but if that isn’t clear, here’s a
description of what you are looking at. Use Custom When Trigger True means that when this
Triggerable gets the true value passed in, it will use the information defined in Custom True
Values to move the Toggle. In the pictured Component above, it would move to
TruePosition’s RectTransform’s Values. If Use Custom When Trigger True was set to false,
it could move to the Toggle’s original position. This is further reinforced by the fact that the
custom values disappear from the inspector when these are set to false. This concept is
important, so we are going to use another example.

Let’s imagine a Toggle with Components TriggerOnToggled, and TriggerableSetColor with a
GraphicColorSetter. Let’s imagine our Toggle starts off as teal, and we have set the Custom
Color When True to be blue and the Custom Color When False to be orange. Here is a
flowchart of how the colors would be set.

And here’s the chart of what options would get what colors.

 True in Inspector False in Inspector

Use Custom When Trigger
True

True passed in: Custom
Value Used

True passed in: Cached
Value Used

False passed in: N/A False passed in: N/A

Use Custom When Trigger
False

True passed in: N/A True passed in: N/A

False passed in: Custom
Value Used

False passed in: Cached
Value Used

!
If you run into an error that says you are trying to use the cached value before the value
has been cached, then you should try to set the value to be cached sooner. So if it’s
BeforeFirstModification, try setting it to OnStart. If it’s OnStart, then try setting it to
OnAwake. If that doesn’t work, then you might have to delay whatever Trigger is
attempting to set the value. You can check the Trigger in debug mode (covered
below).

Extra Features

Debugging / Testing
Like the Trigger Components, Triggerable Components also have a convenient context menu
for easily testing and debugging behaviour.

You only have to right click on the title of the Component, and you can spoof true and false hits,
without needing to trigger the Component in game. Some other nice debug features are
available in the inspector’s built in debug mode. In case you have forgotten how to enable that,
it’s by clicking on the hamburger dropdown () icon in the top right corner of your inspector
and click Debug.

Doing so will give you a dropdown like this, and change how your inspector looks. You can see
here, we have our same TriggerableSetTransformValues Component, but with a few fields
that you couldn’t see before. The most interesting ones are the Number Of True Hits, Number
Of False Hits, and Last Behaviour To Trigger This. If we were to be in the game and need to
know what was going on, we could reference it in debug mode.

This is the same Component after the game has been running for a bit. We can clearly see the
number of times the object has been triggered, as well as the reference to the TriggerOnTimer
Component. If you like, you can also click on this reference to be brought to the object in the
hierarchy.

I think that covers the basics of how Triggerables work. Next up, we will discuss how to make
your own.

Using Triggerables in Code
Trigger Me Timbers can handle many things, but it may be the case that you need to manipulate
something in your game world that isn’t built in to Unity. Here’s how you’d make your own
Triggerable. Easy enough, let’s start from the beginning. First thing you have to do is make
sure DustProductions.TriggerMeTimbers exists in your Unity project. Then you make a new
script however you prefer, I like to right-click on the folder and do this:

Then after you’ve named your file (I’m naming it TriggerableSelectSelectable), open it up in
your IDE. You should be greeted with something like this:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class TriggerableSelectSelectable : MonoBehaviour
{

 // Use this for initialization
 void Start ()

 {

 }

 // Update is called once per frame
 void Update ()
 {

 }

}

Now before we start to write our code, we have to do a few things. The first is to make sure we
add “using DustProductions.TriggerMeTimbers” to the top of the file. Then we can inherit
from Triggerable instead of MonoBehaviour. I also like to delete the things Unity added for
me and start with a blank slate. If you’ve made it this far, your compiler should hopefully start
yelling at you that you haven’t implemented the abstract class. That’s the next step. Here’s
what it looks like now.

using DustProductions.TriggerMeTimbers;
using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class TriggerableSelectSelectable : Triggerable
{

 protected override void TriggerHit(bool triggerValue)
 {

 throw new System.NotImplementedException();
 }

}

If we were to try to add the Component now, this is what we would see:

Not very impressive, so let’s make it actually do stuff. The first thing I need for my new
Component is a reference to the Selectable I want to select. In order to use the Selectable
class, I will also need to use UnityEngine.UI. Here’s what we have now:

using DustProductions.TriggerMeTimbers;
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

public class TriggerableSelectSelectable : Triggerable
{

 [SerializeField]
 private Selectable SelectableToSelect;

 protected override void TriggerHit(bool triggerValue)
 {

 throw new System.NotImplementedException();
 }

}

Now we just need to select our Selectable whenever a Trigger calls TiggerHit() on our object.

using DustProductions.TriggerMeTimbers;
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

public class TriggerableSelectSelectable : Triggerable
{

 [SerializeField]
 private Selectable SelectableToSelect;

 protected override void TriggerHit(bool triggerValue)
 {

 if (SelectableToSelect == null)
 {

 Debug.LogError("Can't select Selectable because it is null on:
" + name, this);
 return;
 }

 SelectableToSelect.Select();

 }

}

I also added a null check just in case we forgot to assign the SelectableToSelect in the
inspector. You’ll also notice that I’m not using the triggerValue for anything. So the behaviour
we’d see from this Component at this point is that any time a Trigger called TriggerHit(), the
Selectable would be selected. We might want to change that so it is only selected when we
pass in true. All that takes is a quick check, and we are good to go. Here’s what our final code
looks like:

using DustProductions.Core;
using DustProductions.TriggerMeTimbers;
using UnityEngine;
using UnityEngine.UI;

public class TriggerableSelectSelectable : Triggerable
{

 [Header("Object to Set")]
 [Tooltip("Select this Selectable when true is passed in")]
 [SerializeField]
 private Selectable SelectableToSelect;

 private void Reset()
 {

 this.TryGetComponent(ref SelectableToSelect);
 }

 protected override void TriggerHit(bool triggerValue)
 {

 if (SelectableToSelect == null)
 {

 Debug.LogError("Can't select Selectable because it is null on:
" + name, this);
 return;
 }

 if (triggerValue)
 {

 SelectableToSelect.Select();

 }

 }

}

I also added some nice to have features like the header, tooltip text, and automatically grabbing
the Selectable if it exists when the Component is added using the nice utility method provided
by DustProductions.Core called TryGetComponent().

Now you are ready to test your Component by starting the game, finding a Selectable, and
using the nice context menu mentioned up in the Extra Features section to make sure it works.

I think that’s all you need to get started with making your own Triggerables. Of course this one
was pretty simple, yours might be more complicated, but the key things to remember are that
you have to inherit from Triggerable, keep things generic and simple, and once you have
created a Triggerable, you can trigger it using any of the Triggers in the game, allowing you
ultimate flexibility in how to use it.

!
Technically, you just need to implement the ITriggerable interface, meaning you can
make just about anything into a Triggerable, you don’t even need to inherit from the
Triggerable class!

Best Practices

Use a consistent style when building objects in the editor
I like to define one entry point one exit point for a GameObject or group of GameObjects. I find
myself using Toggles as entry and exit points just because they can be interactable for UI
elements. They are also nice to use with ToggleGroups, which can only allow one Toggle to be
active at a time for the group. Regardless of what you choose to do, try to do it everywhere, so
you never have to dig around and figure out what is triggering what.

If you are planning on having a variable set over time for a
Triggerable, use a ValueSetter instead
Trigger Me Timbers comes with Triggerables for setting floats, Colors, and the values of
Transforms. So if you need to change any of these types of objects, you don’t need to create a
Triggerable, what you want instead is to create a ValueSetter. Let’s say you wanted to set the
speed of one of your characters, and that speed is a float value. You might create a
Component called CharacterSpeedValueSetter that would inherit from ValueSetter<float>.
Then you can drop your CharacterSpeedValueSetter onto a TriggerableSetFloat, and be
hooked into everything Trigger Me Timbers has to offer. No need to write your own code for

transitioning the values, no need to write your own logic for handling the Trigger, just need to
write the code that says how to get and set the value you want to change.

