
DustProductions.Core
Overview Guide

Last updated: 23 Feb 19

Online Documentation
docs.productionsofdust.com

Table of Contents
Online Documentation 1

Table of Contents 1

Frequently Asked Questions 3
Where do I go to get help? 3
So what is DustProductions.Core, exactly? 3
Do you have documentation on the API? 3

How to use DustProductions.Core 4
Attributes and Property Drawers 4

HideFieldAttribute 4
Simple Example 4
Advanced Usage Example 5

QuickButtonAttribute 6
Example 6

StringDropdownAttribute 6
Example 7

ScriptableObjects 7
CursorDefinition 8
TransitionDefinition 10

ValueSetters 13
ValueSetter 13

FloatValueSetter 13
AudioSourceVolumeSetter 14

http://docs.productionsofdust.com/

CanvasGroupAlphaSetter 14
LightIntensitySetter 14

ColorValueSetter 14
GraphicColorSetter 14
LightColorSetter 14

TransformValueSetter 14
CanvasGroupInteractableSetter 15

Utilities 15
MonoBehaviours 16

Comment 16
CursorManager 16
DeveloperInformationMonoBehaviour 18
DontDestroyOnLoad 18
Singleton 18

Libraries 19
CoroutineEssentials 19
CurveInterpolater 19
DiskUtilities 19
ExtensionMethods 19
Interpolate 19
OpenInFileBrowser 19
ReflectionUtilities 19
UIUtilities 19

Other Stuff 20
Cacheable 20
DeveloperInformation 20
IEditorComponentAddedHandler 20
Locker 20
MultiValueDictionary 20
ScriptableObjectFactory 20
SerializableCursorDefinitionStack 20
SerializableStack 21
TransformValues 21

Frequently Asked Questions

Where do I go to get help?
The first thing to do is check out this FAQ and guide or the ​online documentation​ for answers.

If your problem is not answered in those places, the next fastest way to get support is through
GitLab. It’s possible an issue is already open for your problem.
GitLab: ​https://gitlab.com/DustProductions/DustProductions.Core/issues

If you cannot access GitLab, or you just have a quick question or something, you can email us
as well.
Email: ​support@productionsofdust.com

So what is DustProductions.Core, exactly?
Core is a collection of useful assets I use in all of my Unity projects to make development faster
and easier, including Trigger Me Timbers. But it’s not just me and Trigger Me Timbers that gets
to benefit from Core. As a result of purchasing Trigger Me Timbers, you also get access in your
projects.

Inside you will find plenty many things that Trigger Me Timbers leverages to be effective, the
ScriptableObject ​TransitionDefinition ​is a great example. It allows you to define what is
essentially an animation that can happen over time. You can base it off of pre-created
transitions, or make your own custom transition with a curve editor. The transitions can then be
plugged in to something like ​GraphicColorSetter​, which then means, instead of a color
changing from white to blue instantly, it happens over whatever amount of time and using the
animation curve defined in the ​TransitionDefinition​. For programmers, there’s all sorts of
useful attributes and boilerplate saving utilities that we’ll go over later.

Do you have documentation on the API?
Yep, we sure do. You can find that on our website at ​docs.productionsofdust.com

http://docs.productionsofdust.com/
https://gitlab.com/DustProductions/DustProductions.Core/issues
mailto:support@productionsofdust.com
http://docs.productionsofdust.com/

How to use DustProductions.Core
As mentioned, there are plenty of time saving features of DustProductions.Core for use in Unity.
First we will talk about the Attributes and Property Drawers, then the ScriptableObjects, then
Setters, then the Utilities.

Attributes and Property Drawers
Property Drawers are a nice way to give extra functionality to your inspector fields without
having to write Custom Editors. This way, if you want to change the appearance of a field in the
inspector, you just tag it with a custom Attribute, instead of having to maintain a bunch of
unwieldy editor scripts, often duplicating a bunch of code. You can ​read more about Property
Drawers in here​. For now, we’ll dive in to the ones Core provides you.

HideFieldAttribute
Allows hiding / disabling of fields without writing fancy custom editors. The simplest usage
involves passing in the name of another serialized field that’s a boolean. If that boolean is true,
the field will be drawn in the inspector, if it’s false, it will not be drawn.

Simple Example

https://docs.unity3d.com/Manual/editor-PropertyDrawers.html
https://docs.unity3d.com/Manual/editor-PropertyDrawers.html

 [​SerializeField​]
 ​protected​ ​bool​ UseCustomWhenTriggerTrue = ​true​;

 [​SerializeField​]
 [​HideField(​"UseCustomWhenTriggerTrue"​)​]
 CachePromptType CacheCustomTrueValues;

Additional options allow for inverting the output, or choosing not to completely hide fields, just
disabling them.

Advanced usage allows you to pass in multiple conditional sources, checking ints and floats
against certain values, checking the type of a reference, checking a string against another
string, etc.

Advanced Usage Example

[​SerializeField​]
private​ Transform _TransformToSet;

[​SerializeField​]
[​HideField(​"_TransformToSet"​, CompletelyHide = false)​]
private​ ​bool​ _ModifyLocalScale;

[​SerializeField​]
[​HideField(​"_TransformToSet"​, typeof(RectTransform))​]
private​ ​bool​ _ModifyAnchors;

_ModifyLocalScale​ will be disabled in the inspector unless ​_TransformToSet​ is not a null
value. ​_ModifyAnchors​ will not be drawn at all unless ​_TransformToSet​ is a RectTransform.

QuickButtonAttribute
Use this on a serialized field to quickly add a button to the inspector without having to write
custom inspector code. This is an abuse of the PropertyDrawer system to make it so instead of
drawing a field, it will draw a button that can run a method in your script instead.

Example

[​SerializeField​]
[​QuickButton(​"EDITORONLY_CreateNewDefinition"​, false)​]
private​ ​bool​ CreateNewDefinition;

private​ ​void​ EDITORONLY_CreateNewDefinition()
{

 ​// Make a new Transition Definition Code
}

Additional options include the ability to define a minimum width of the button, label the button
(by default it will take the name of the field), and choose whether to display the value of the field
on the button itself (the above example passes in ​false ​for this because we don’t care about the
boolean value of ​CreateNewDefinition​).

StringDropdownAttribute
Allows drawing a dropdown for strings in the editor, similar to how enums are drawn. Although
I’d probably recommend using enums in most situations you might use this, there are some
good reasons to use strings as well. This allows you to pick a string from a set of strings for a
field, instead of having to type the string manually.

Example

[​SerializeField​]
protected​ ​string​[] TriggerDropdownOptions = ​new​ ​string​[] { ​"OnStart"​,
"OnDestroy"​ };

[​SerializeField​]
[​StringDropdown(​"TriggerDropdownOptions"​, ​"None"​)​]
protected​ ​string​ TrueTrigger = ​"None"​;

Put the tag on a serialized string field and pass in the name of a string array. Optional
parameters to pass in a string that will be in the list before all of the items in the string array (in
this example ​“None”​ will always be present in the dropdown). You can also pass in another
array (​Note​: this array must have an object reference in order to work), and it will be added to
the dropdown (after the single string parameter, but before the other values).

ScriptableObjects
ScriptableObjects act like blueprints to create a variety of assets for use in your game. You can
assign them to values in the inspector, but they cannot be added onto GameObjects like
MonoBehaviour Components can. So, what’s the point? Well, the point is that they are like
plug and play ways to modify behaviour on an object without having to write or compile code to
do so. You can ​read more about ScriptableObjects in Unity’s documentation here​. The easiest
way to create a new ScriptableObject asset is by right clicking in the Project view and going to
the Create menu.

https://docs.unity3d.com/Manual/class-ScriptableObject.html

There you will see the ScriptableObjects at the top of the list. Let’s talk about the
ScriptableObjects you get access to with Core.

CursorDefinition
This is an asset to hold a cursor to use in game. You might want to polish your game by using a
custom cursor instead of the default arrow that comes with the operating system. If so, this is
how you would do it. First create a ​CursorDefinition ​asset. I’m going to create one for this

texture: Here’s what a newly created definition looks like.

Once you have created your “NewCursorDefiniton”, you should give it a name (in this case,
mine will be named ​OpenHand​). Here’s what it looks like all filled out.

Then you assign the texture to be used as a cursor. It’s important this texture be imported as a
Cursor, by clicking on the texture in the Project view and setting it in the inspector.

Then you have to assign the hotspot. The hotspot is the pixel on the texture that is actually
where the clicking will happen. Measurements start in the top left, and are positive numbers on
the x and y axis. My hotspot is right in the middle of the hand, 8 to the right, and 8 down from
the top left of the image. After that, you can leave the Cursor mode type as ​Auto ​unless it
doesn’t show up for some reason, then you’ll want to switch it.

So now you have a bunch of ​CursorDefinitons ​created, and you want to know how to use
them, right? Well, the easiest way to use them is by using the ​CursorManager ​Singleton.

Now, before we get into it, I know there are many reasons why the Singleton (anti-)pattern is
bad. The good news is, you don’t have to use it if you don’t want to, you are free to use
CursorDefinitions ​without using ​CursorManager​. You can read more about ​CursorManager
later on in this documentation.

TransitionDefinition
This is an asset used to create transitions that can be shared across various GameObjects.
This way you only need to create a transition once, and you can reuse it as many times as you
like. Here’s an example of ​EaseOutQuint​ and ​CustomElasticIn ​which are included with Core:

The main difference between these two is that ​EaseOutQuint ​is using a mathematical equation
to determine what the transition looks like, and ​CustomElasticIn ​is using an AnimationCurve.
You can choose between these two types of transitions using the ​My Transition Type
dropdown. Choose ​Interpolate​ if you want a large list of predefined ​Ease Types ​to quickly
choose from.

If you want more control, you can choose a ​Custom​ in the ​Transition Type​ dropdown. This will
allow you to define your own curves.

Core also comes preloaded with a bunch of custom curves for you to build off of and use. To
access them, click the icon in the bottom left of the curve editor panel, then the icon in
the top right of that menu. Then you want to select the “​EasingCurves (Project)​” option
instead of “Default” The EasingCurves Project is licensed under the ​2-clause BSD License​,
which can be found below.

Note: This license has also been called the "Simplified BSD License" and

the "FreeBSD License". See also the 3-clause BSD License.

Copyright 2018 Dust Productions, LLC (originally from

https://github.com/nobutaka/EasingCurvePresets​)
Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

1. ​Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. ​Redistributions in binary form must reproduce the above copyright

https://opensource.org/licenses/bsd-license.php
https://github.com/nobutaka/EasingCurvePresets

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

ValueSetters
Setters are scripts used to interact with commonly modified variables. They provide the ability
to change values over time, as well as lock and unlock objects (more on what that means later).

ValueSetter
A ​ValueSetter ​is a Component that’s used to set a struct to a new value. A float and
UnityEngine.Color are examples of structs. There are many more types of structs, but we won’t
go into much more depth here. The thing to keep in mind is that you can make a ​ValueSetter
out of any struct, and we have already created a few for you. ​FloatValueSetter ​already exists,
but here’s how it is defined:

public​ ​abstract​ ​class​ FloatValueSetter : ValueSetter<float>

You would do similarly to define your own ​ValueSetter​. Another useful feature is these can
automatically be added to GameObjects depending on context. A dictionary is built every time
the code is compiled by calling the static method ​GetAffectedType() ​on a ​ValueSetter​. This
dictionary can be accessed only from editor code by calling the static method
SetterHelpers.EDITORONLY_TryGetAutoAddSettersFromType()​. Chances are, you will
never have to call this yourself.

FloatValueSetter
By itself ​FloatValueSetter​ isn’t very useful, all it does is tell ​ValueSetter ​how to transition floats
from one value to another. The power comes when we inherit from this and can start actually
setting values.

AudioSourceVolumeSetter
This does the work of changing the volume of an AudioSource for you.

CanvasGroupAlphaSetter
This does the work of setting alpha values on CanvasGroups, can also set the blocksRaycasts
value when the transparency changes. In case you are unfamiliar with CanvasGroups, I
recommend ​reading about them in the Unity documentation here​.

Block Raycasts When Partially Transparent​ is a nice convenience. If you leave this as ​false​,
whenever the CanvasGroup is not at full opacity, you will be able to click through it. Setting this
to ​true​ will block the raycasts, and you will not be able to click things that are directly behind the
CanvasGroup. This setting does NOT know about other things interacting with the
blocksRaycasts value, it only knows when it goes to set the value itself (in other words, it isn’t
constantly polling that value to see if it has changed, it only checks when
CanvasGroupAlphaSetter ​does the work).

LightIntensitySetter
This controls how intense a light’s brightness is. It’s nice for special effects and things like that.

ColorValueSetter
By itself ​ColorValueSetter​ isn’t very useful, all it does is tell ​ValueSetter ​how to transition
UnityEngine.Color from one value to another. The power comes when we inherit from this and
can start actually setting values.

GraphicColorSetter
Use this whenever trying to set a Graphic's color, it will allow you to set transitions and fancy
things. It works basically the same as ​CanvasGroupAlphaSetter​, but it’s for color on a Graphic
instead of alpha on a CanvasGroup.

LightColorSetter
Use this to change the Color of a Light easily.

TransformValueSetter
Use this to modify a Transform’s position, rotation, and / or scale. With a RectTransform, you
can also modify the anchors, pivot, and sizeDelta values. This Component can also set values
over time using ​TransitionDefinitions​.

The main idea is that you can pass in a ​TransformValues​ struct, and the Transform linked in
the inspector will also be set to those values. In Unity you can’t make a Transform without

https://docs.unity3d.com/ScriptReference/CanvasGroup.html

attaching it to a GameObject, so ​TransformValues ​solves that problem by saving off the values
before we modify them.

Here’s an example in the inspector that moves a background image.

As with other Setters, this also has the option to cache the values in case you want to reset
them later. Another nice thing about this Component is that the inspector has options to only
allow modification of certain parts of the Transform. It might be the case that you want a
Transform to move to the same position as another Transform, but not necessarily the same
rotation or scale as the other Transform. You can select only the things about the Transform
you want to modify.

CanvasGroupInteractableSetter
Unlike the others, this does not inherit from ​ValueSetter​. This Component’s job is to keep track
of what objects have requested a CanvasGroup’s ​Interactable​ value to be set to true or false.
If any objects are requesting ​Interactable ​to be ​false​, the CanvasGroup’s status will be ​false​.
It’s not until all objects have said the status should be ​true​ until the actual CanvasGroup’s
Interactable ​value will be ​true​. You modify this by calling the ​SetInteractable()​ method. The
requestingObject​ you pass in can be any C# object. The same object must be passed in to
lock and unlock. In other words, Object1 can pass in ​false, ​and Object2 can pass in ​true​, and
the CanvasGroup will still be locked.

Utilities
The utility classes are mostly static libraries used to help with specific tasks. There are a few
exceptions, however. We will first talk about the MonoBehaviours, then we will discuss the
other classes.

MonoBehaviours

Comment

This is used to leave comments on GameObjects (similar to how you’d leave comments in
code). This information is stripped from the build.

CursorManager

CursorManager​ is a ​Singleton​ that allows you to change the mouse cursor from just about
anywhere. The three main ways you will interact with ​CursorManager ​are calling
AddCurrentCursor()​, ​RemoveCurrentCursor()​, and ​SetCursorToDefault()​. Trigger Me
Timbers has some nice Components to do this for you, but if you wanted to hook into it yourself,
here’s how you’d do it.

Cursors are kept as a stack. The cursor on the top of the stack is the cursor that will be
displayed in Unity, so it would follow that in order to set the cursor, you would call
CursorManager.Instance.AddCurrentCursor()​.

public​ ​void​ AddCurrentCursor(CursorDefinition cursorDefinition, ​bool
clearStackBeforeAdd = ​false​)

You will be required to pass in a ​CursorDefinition​, which is a ScriptableObject provided by
Core we covered above. You can also optionally clear the current stack before pushing this to
the top. (​Note:​ By default, ​CursorManager ​will warn you if your stack gets to 7 or larger. This
number can be changed, but if you are only pushing to the stack, and never popping from it, you
are bound to have memory problems.)

public​ ​void​ RemoveCurrentCursor()

Because this is set up as a stack, once you want to switch the cursor back to what it was, all
you have to do is call ​CursorManager.Instance.RemoveCurrentCursor().

public​ ​void​ SetCursorToDefault(​bool​ clearStackBeforeSetting = ​false​)

If you don’t want to go back to the previous cursor, and instead want to just go back to the
default, you can use ​CursorManager.Instance.SetCursorToDefault()​ instead. By default, this
does ​NOT​ clear the stack, you have to pass in ​true​ if you would like to do a full reset. Here’s a
little diagram for how you might practically use this:

DeveloperInformationMonoBehaviour
Holds information on how to contact us at DustProductions, LLC.

DontDestroyOnLoad
Makes it so an object persists between scene loads.

Singleton
Ensures only one version of the script can exist at a time. Can be useful for something like a
manager class. Be careful though, with great power comes great responsibility. It’s very easy
to set up a situation where overdependence on these leads to bad organization and race
conditions. Consider yourself warned. To turn a script into a ​Singleton​, take your new class (in
this example, it’s called “NewManagerClass”):

using​ UnityEngine;

// Instead of this...

public​ ​class​ NewManagerClass : MonoBehaviour
{

 ​public​ ​void​ ManageAllTheThings()
 {

 ​// Code to manage things
 }

}

And change what it inherits from to ​Singleton​, and pass in the Type of ​Singleton ​it should be.

using​ UnityEngine;
using​ DustProductions.Core;

// ...do this

public​ ​class​ NewManagerClass : Singleton<NewManagerClass>
{

 ​public​ ​void​ ManageAllTheThings()
 {

 ​// Code to manage things
 }

}

Then you can access the ​Singleton ​from any class like the following example:

NewManagerClass.Instance.ManageAllTheThings();

Libraries
Libraries contain many useful methods for reducing the overall code that needs to be written.

CoroutineEssentials
Contains an easy way to track coroutines, cancel them, and see if they have finished execution.
Use by saving the Coroutine to a variable, then assigning the variable with ​mySavedRoutine =
this.StartCoroutine<>()​.

CurveInterpolater
Takes in AnimationCurves, and returns a value on that curve. Works a bit like
Mathf.Interpolate().

DiskUtilities
Contains methods related to reading and writing on the disk. These have only been lightly
tested on anything other than Windows, so your mileage may vary if you are using a different
OS. I recommend checking out the online documentation for a full list of available functionality.

ExtensionMethods
Contains some useful methods for development, sort of a catch-all. I recommend checking out
the online documentation for a full list of available functionality.

Interpolate
This is a library filled with methods to get mathematical interpolations between points. Can also
handle curves and splines. I recommend checking out the online documentation for a full list of
available functionality.

OpenInFileBrowser
Used to easily open files in the default file browser for Windows and macOS.

ReflectionUtilities
Helpful methods when dealing with C# Reflection, especially in Unity.

UIUtilities
Some handy things when dealing with Unity UI, RectTransforms, and Canvases.

Other Stuff
These don’t fit into any other grouping, so they just exist here.

Cacheable
An abstract class that can be used to easily cache values and set to the cached values.

DeveloperInformation
A class that has developer information hardcoded. ​DeveloperInformationMonoBehaviour
pulls from these values.

IEditorComponentAddedHandler
An interface that sets up the ability to do something when a Component is added in the editor.
The basic premise is the object that’s going to do something implements this interface, and the
Component you are adding calls ​this.EDITORONLY_AnnounceComponentAddedInEditor().
Usually you’d call this in the Reset() method provided by Unity. Don’t forget to wrap your call in
#if UNITY_EDITOR, otherwise your project won’t build.

Locker
Locker is an easy way to simplify if multiple objects want control of something. A good example
that uses ​Locker​ is ​CanvasGroupInteractibleSetter​. Many objects might want to control the
value of the CanvasGroup’s Interactable value. The Locker is used in the backend to see what
objects have requested what values for that. The main way to use this is with ​Lock(), Unlock(),
and ​IsLocked.

MultiValueDictionary
An easy way to have a Dictionary that has one key for multiple values. Internally these multiple
values are just a List of whatever Type you use to create the Dictionary.

ScriptableObjectFactory
Used by Core to create ScriptableObjects of any type. You can also hook into this with
ScriptableObjectFactory.EDITORONLY_TryCreateNewScriptableObjectAtPath<>()​. This
will throw a warning if the asset you are trying to create already exists.

SerializableCursorDefinitionStack
See ​SerializableStack​.

SerializableStack
A way to view a “Stack” in the Unity inspector. The unfortunate thing is the inspector does not
play nice with generic types, so you have to create a class like ​SerializableCursorStack ​that
inherits from this in order for it to work properly. Example:

[​Serializable​]
public​ ​class​ SerializableCursorDefinitionStack :
SerializableStack<CursorDefinition>

Internally, the “Stack” is just a List, which means it’s not optimized the same way a regular Stack
might be. Chances are, you’ll never notice the difference.

TransformValues
This is a data holding struct that’s used to cache off all the important values of a Transform. We
do this because Transforms must be accompanied by a GameObject in Unity, and we don’t
want to go through all of that upkeep just to hold some values. The data held by this is quite
large for a struct, so it is recommended to always pass this around by reference using the “ref”
keyword.

